هندسة إقليدية · مضلع · ضلع · زاوية · مثلث · دائرة
يعدّ رباعياً مماسياً بمعنى أنّ كل ضلع من أضلاعه هو مماس لدائرة واحدة.
تجعل الكوكيز ويكي هاو يعمل بشكل أفضل. باستمرارك في استخدام موقعنا، أنت توافق على سياسة الكوكيز الخاصة بنا.
تسجيل read more الدخول الاجتماعي لا يعمل في نوافذ التصفح المخفي والخاص. يُرجى تسجيل الدخول باسم المستخدم الخاص بك أو بريدك الإلكتروني للمتابعة.
المعين له نفس صيغة حساب متوازي الأضلاع والمربع ، وتحصل على شكل رباعي بأبعاد متساوية.
قطراه متعامدان وينصفان زواياه، ويشكلان محوري تناظر للمعين.
يمكن أيضاً حساب ارتفاع المعين اعتماداً على قِيَم الأقطار، بالإضافة إلى طول أحد أضلاع المعين، وقيمة المساحة، وذلك باستخدام المعادلتين الآتيتين:[٢]
هناك العديد من طرق حساب مساحة المعين التي يمكن استخدامها بكل سهولة عند معرفة المعطيات اللازمة لكل طريقة، فمساحة المعين تُعبّر عن المنطقة المحصورة بين أضلاعها الأربعة والتي تكون بالوحدة المربعة، ومن أبرز طرق حساب مساحة المعين ما يأتي: استخدام طول الأقطار
لماذا كانت الإجابه غير مفيده الإجابة لا تحتوي على المعلومات التي أبحث عنها
عند توصيل نقاط المنتصف لأضلاع المعين والحصول على مستطيل فإن طوله وعرضه سيعادل نصف قيمة القطر الرئيسي له، وتكون مساحة المستطيل هذا تعادل نصف مساحة المعين.
ومن خواصّ المعين أنّ زواياه المتقابلتين متساويتان؛ (أقل من تسعين درجة)، وأنّ الزاويتين المتبقّيتين متساويتان؛ (أكبر من تسعين درجة)، بكلمات وعبارات أخرى زاويتان متقابلتان منفرجتان، و زاويتان متقابلتان حادّتان.
كيفية حساب أضلاع المثلث القائم الزوار شاهدوا أيضاً
يحمل المعين جميع خواص متوازي الأضلاع، بالإضافة إلى هذه الخصائص:
ويمكن تمثيل المساحة عن طريق حسابات المثلث بالقانون الآتي:
حساب مساحة المعين اعتماداً على طول الأقطار: يمكن حساب مساحة المعين باستخدام القانون الآتي: